Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arh Hig Rada Toksikol ; 75(1): 1-14, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548377

RESUMO

Human exposure to plastic particles has raised great concern among all relevant stakeholders involved in the protection of human health due to the contamination of the food chain, surface waters, and even drinking water as well as due to their persistence and bioaccumulation. Now more than ever, it is critical that we understand the biological fate of plastics and their interaction with different biological systems. Because of the ubiquity of plastic materials in the environment and their toxic potential, it is imperative to gain reliable, regulatory-relevant, science-based data on the effects of plastic micro- and nanoparticles (PMNPs) on human health in order to implement reliable risk assessment and management strategies in the circular economy of plastics. This review presents current knowledge of human-relevant PMNP exposure doses, pathways, and toxic effects. It addresses difficulties in properly assessing plastic exposure and current knowledge gaps and proposes steps that can be taken to underpin health risk perception, assessment, and mitigation through rigorous science-based evidence. Based on the existing scientific data on PMNP adverse health effects, this review brings recommendations on the development of PMNP-specific adverse outcome pathways (AOPs) following the AOP Users' Handbook of the Organisation for Economic Cooperation and Development (OECD).


Assuntos
Água Potável , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas , Humanos , Microplásticos/toxicidade , Nanopartículas/toxicidade , Medição de Risco
2.
Arh Hig Rada Toksikol ; 75(1): 68-75, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548383

RESUMO

Environmental pollution with plastic nanoparticles (PNPs) has rendered hazard assessment of unintentional human exposure to neurotherapeutic drugs through contaminated water and food ever more complicated. Due to their small size, PNPs can easily enter different cell types and cross different biological barriers, while their high surface-to-volume ratio enables higher adsorption of chemicals. This is how PNPs take the role of a Trojan horse as they enhance bioaccumulation of many different pollutants. One of the health concerns related to water pollution with neurotherapeutic drugs is endocrine disruption, already evidenced for the anticonvulsant drug carbamazepine (Cbz) and antidepressant fluoxetine (Flx). Our study aimed to evaluate endocrine disrupting effects of Cbz and Flx in mixtures with polystyrene nanoparticles (PSNPs) using the in vitro luciferase assay to measure oestrogen receptor activity in T47D-KBluc cells treated with Cbz-PSNPs or Flx-PSNPs mixtures and compare it with the activities observed in cells treated with individual mixture components (Cbz, Flx, or PSNPs). Dose ranges used in the study were 0.1-10 mg/L, 1-100 µmol/L, and 0.1-10 µmol/L for PSNPs, Cbz, and Flx, respectively. Our findings show that none of the individual components activate oestrogen receptors, while the mixtures induce oestrogen receptor activity starting with 0.1 mg/L for PSNPs, 10 µmol/L for Cbz, and 0.5 µmol/L for Flx. This is the first study to evidence that PSNPs increase oestrogen receptor activity induced by neurotherapeutic drugs at their environmentally relevant concentrations and calls for urgent inclusion of complex mixtures in health hazard assessments to inform regulatory response.


Assuntos
Fluoxetina , Microplásticos , Humanos , Poliestirenos , Receptores de Estrogênio
3.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432221

RESUMO

A freely available "in vitro dosimetry" web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs' properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

4.
Biomed Chromatogr ; 35(2): e4974, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893361

RESUMO

An improved fabric-phase sorptive extraction (FPSE) protocol has been developed and validated herein for the simple, fast, sensitive and green determination of seven parabens-methyl paraben, ethyl paraben, propyl paraben, butyl paraben, isopropyl paraben, isobutyl paraben and benzyl paraben-in human urine samples by HPLC-DAD. The mobile phase consisted of ammonium acetate (0.05 m) and acetonitrile, while total analysis time was 13.2 min. Sol-gel poly (tetrahydrofuran) coated FPSE membrane resulted in optimum extraction sensitivity for the seven parabens. The novel FPSE medium as well as the improved and faster sample preparation procedure resulted in lower limit of detection and quantitation values in comparison with previously reported methods. The separation was carried out using an RP-HPLC method with a Spherisorb C18 column and a flow rate of 1.4 ml/min. The validation of the analytical method was carried out by means of linearity, precision, accuracy, selectivity, sensitivity and robustness. For all seven parabens, the limits of detection and quantitation were 0.003 and 0.01 µg/ml, respectively. Relative recovery rates were between 86.3 and 104%, while RSD values were <12.6 and 19.3% for within- and between-day repeatability, respectively. The method was subsequently applied to real human urine samples.


Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Parabenos/análise , Humanos , Limite de Detecção , Modelos Lineares , Parabenos/química , Parabenos/isolamento & purificação , Reprodutibilidade dos Testes , Têxteis
5.
Arh Hig Rada Toksikol ; 71(2): 130-137, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975099

RESUMO

Garlic is a valuable source material for medicines due to its known antitumor, hypolipidaemic, antioxidant, and immunomodulatory effects. This study compares the protective effects of conventionally grown (CG) and in vitro propagated garlic (PG) against hydrogen peroxide-induced cytotoxicity in HepG2 cells and their antioxidant activity. Garlic used in this study was obtained by planting garlic cloves or by planting the transplants of PG directly in the field. At the end of the vegetation period, CG and PG were sampled and extracts prepared for the experiment. Compared to conventionally grown garlic bulbs, PG leafy part yielded significantly higher content of polyphenols, flavonoids and alliin, and also showed equal or higher antioxidant activity, measured by the cell viability test, GSH and ROS level. Moreover, PG can be produced in less time (shorter vegetation period) and with significantly less material (cloves). Significantly higher content of alliin, polyphenols, and flavonoids and significantly higher yield of plant biomass in PG has a great potential to become a new production model with improved garlic properties as a medicine material.


Assuntos
Carcinoma Hepatocelular , Alho , Neoplasias Hepáticas , Antioxidantes/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Extratos Vegetais/farmacologia
6.
J Chromatogr A ; 1630: 461530, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950814

RESUMO

An improved pretreatment approach of human breast tissue is demonstrated for subsequent analysis of seven parabens including methyl paraben (MPB), ethyl paraben (EPB), propyl paraben (PPB), butyl paraben (BPB), isopropyl paraben (iPPB), isobutyl paraben (iBPB), and benzyl paraben (BzPB). Specifically, a well-designed homogenization procedure, conjugated with an optimized fabric phase sorptive extraction (FPSE) protocol, resulted in a carefully outlined sample preparation process as part of a green, simple, sensitive, economical and fast HPLC-PDA analytical method in agreement with Green Analytical Chemistry (GAC) demands. Among all tested FPSE membranes, the highest extraction efficiency was achieved by employing sol-gel poly(tetrahydrofuran) (sol-gel PTHF) coating on 100% cotton cellulose fabric that represents a medium polarity microextraction device, which combined the advanced material characteristics of sol-gel sorbent and the rich surface chemistry of an inherent porous cellulose fabric substrate. The chromatographic separation was accomplished with a Spherisorb C18 column and an isocratic mobile phase consisted of ammonium acetate and acetonitrile at a flow rate of 1.4 mL/min. The total analysis time was 13.6 min. The analytical adequacy of the composite sample preparation and chromatographic separation method was strongly evidenced by its successful application in the bioanalysis of real cancerous and non-cancerous tissue samples originated from different sub regions of human breast including axila, the upper left and the right quadrant. In all samples, at least one paraben was detected, while 35% of the samples were tested positive for all seven target parabens. Moreover, concentration levels of parabens in cancerous tissues were unambiguously higher than in healthy tissues. The obtained results underlined bioaccumulation potential of parabens in human breast tissue as a consequence of constant low-dose exposure of humans, despite the statutory concentration limits. The developed methodology has demonstrated to be suitable and efficient for future epidemiological and toxicological studies.

7.
Nanomaterials (Basel) ; 10(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708883

RESUMO

Silver nanoparticles (AgNPs) are one of the most investigated metal-based nanomaterials. Their biocidal activity boosted their application in both diagnostic and therapeutic medical systems. It is therefore crucial to provide sound evidences for human-related safety of AgNPs. This study aimed to enhance scientific knowledge with regard to biomedical safety of AgNPs by investigating how their different surface properties affect human immune system. METHODS: preparation, characterization and stability evaluation was performed for four differently coated AgNPs encompassing neutral, positive and negative agents used for their surface stabilization. Safety aspects were evaluated by testing interaction of AgNPs with fresh human peripheral blood mononuclear cells (hPBMC) by means of particle cellular uptake and their ability to trigger cell death, apoptosis and DNA damages through induction of oxidative stress and damages of mitochondrial membrane. RESULTS: all tested AgNPs altered morphology of freshly isolated hPBMC inducing apoptosis and cell death in a dose- and time-dependent manner. Highest toxicity was observed for positively-charged and protein-coated AgNPs. Cellular uptake of AgNPs was also dose-dependently increased and highest for positively charged AgNPs. Intracellularly, AgNPs induced production of reactive oxygen species (ROS) and damaged mitochondrial membrane. Depending on the dose, all AgNPs exhibited genotoxic potential. CONCLUSIONS: this study provides systematic and comprehensive data showing how differently functionalized AgNPs may affect the human immune system. Presented results are a valuable scientific contribution to safety assessment of nanosilver-based blood-contacting medical products.

8.
Small ; 16(36): e2003303, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700469

RESUMO

Nanotechnologies have reached maturity and market penetration that require nano-specific changes in legislation and harmonization among legislation domains, such as the amendments to REACH for nanomaterials (NMs) which came into force in 2020. Thus, an assessment of the components and regulatory boundaries of NMs risk governance is timely, alongside related methods and tools, as part of the global efforts to optimise nanosafety and integrate it into product design processes, via Safe(r)-by-Design (SbD) concepts. This paper provides an overview of the state-of-the-art regarding risk governance of NMs and lays out the theoretical basis for the development and implementation of an effective, trustworthy and transparent risk governance framework for NMs. The proposed framework enables continuous integration of the evolving state of the science, leverages best practice from contiguous disciplines and facilitates responsive re-thinking of nanosafety governance to meet future needs. To achieve and operationalise such framework, a science-based Risk Governance Council (RGC) for NMs is being developed. The framework will provide a toolkit for independent NMs' risk governance and integrates needs and views of stakeholders. An extension of this framework to relevant advanced materials and emerging technologies is also envisaged, in view of future foundations of risk research in Europe and globally.


Assuntos
Nanoestruturas , Nanotecnologia , Medição de Risco , Nanoestruturas/toxicidade , Nanotecnologia/normas , Nanotecnologia/tendências , Medição de Risco/normas
9.
Arh Hig Rada Toksikol ; 70(4): 310-314, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623858

RESUMO

Many personal care products on the market contain endocrine disrupting chemicals, including parabens. Parabens are well known chemical additives used as preservatives. They have been found in mammary glands and breast cancer tissues. At the same time, the general public is increasingly exposed to plastic micro- and nanoparticles generated during plastic production and waste disposal. Exposure to chemical cocktails is a realistic scenario of high public health interest, in which many types of compounds such as these two may exhibit synergistic or additive adverse effects. This study evaluated the effects of plastic nanoparticles, parabens, and their mixture on the viability and proliferation of two human breast cancer cell lines: MDA-MB 231, which lacks oestrogen receptors, and MCF-7, which expresses these receptors. Parabens increased proliferation of oestrogen-sensitive breast cancer cells, and this effect became synergistic in the presence of plastic nanoparticles. The mechanism behind synergy may be related to the translocation and adsorption properties of nanoplastics, which served as a Trojan horse to expose cells to parabens more efficiently. These preliminary findings support growing evidence warning about the urgent problem of human exposure to combinations of plastic waste and contingent chemicals.


Assuntos
Neoplasias da Mama/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Cosméticos/toxicidade , Disruptores Endócrinos/toxicidade , Microplásticos/toxicidade , Parabenos/toxicidade , Conservantes Farmacêuticos/toxicidade , Células Tumorais Cultivadas/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade
10.
Adv Healthc Mater ; 8(1): e1801233, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536962

RESUMO

The unique photoluminescent properties of upconversion nanoparticles (UCNPs) have attracted worldwide research interest and inspired many bioanalytical applications. The anti-Stokes emission with long luminescence lifetimes, narrow and multiple absorption and emission bands, and excellent photostability enable background-free and multiplexed detection in deep tissues. So far, however, in vitro and in vivo applications of UCNPs are restricted to the laboratory use due to safety concerns. Possible harmful effects may originate from the chemical composition but also from the small size of UCNPs. Potential end users must rely on well-founded safety data. Thus, a risk to benefit assessment of the envisioned combined therapeutic and diagnostic ("theranostic") applications is fundamentally important to bridge the translational gap between laboratory and clinics. The COST Action CM1403 "The European Upconversion Network-From the Design of Photon-Upconverting Nanomaterials to Biomedical Applications" integrates research on UCNPs ranging from fundamental materials synthesis and research, detection instrumentation, biofunctionalization, and bioassay development to toxicity testing. Such an interdisciplinary approach is necessary for a better and safer theranostic use of UCNPs. Here, the status of nanotoxicity research on UCNPs is compared to other nanomaterials, and routes for the translation of UCNPs into clinical applications are delineated.


Assuntos
Nanopartículas/química , Pesquisa Translacional Biomédica , Animais , Tecnologia Biomédica , Humanos , Nanopartículas/efeitos adversos , Publicações , Controle Social Formal
11.
Colloids Surf B Biointerfaces ; 170: 401-410, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945052

RESUMO

Silver nanoparticles (nanoAg) are effective antimicrobials and promising alternatives to traditional antibiotics. This study aimed at evaluating potency of different nanoAg against healthcare infections associated bacteria: Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. A library of differently coated nanoAg of two different sizes (10 and 50 nm) were prepared using coating agents poly-L-Lysine (PLL), cetyltrimethyl-ammonium bromide (CTAB), citrate (CIT), polyvinyl-pyrrolidone (PVP), polysorbate 80 (Tween 80), and dioctyl-sodium sulfosuccinate (AOT). Stability evaluation by means of agglomeration and dissolution behaviour was performed for all nanoAg under conditions relevant for this study. Antibacterial properties of nanoAg were addressed by determining their minimal bactericidal concentrations (MBC) in deionised (DI) water to minimise the influence of silver speciation on its bioavailability. In parallel, AgNO3 was analysed as an ionic control. Studied nanoAg were efficient antimicrobials being remarkably more potent towards E. coli than to S. aureus (4 h MBC values for different nanoAg ranged from 0.08 to 5.0 mg Ag/L and 1.0-10 mg Ag/L, respectively). The toxicity of all nanoAg to S. aureus (but not to E. coli) increased with exposure time (4 h vs 24 h). 10 nm sized nanoAg released more Ag-ions and were more toxic than 50 nm nanoAg. Coating-dependent toxicity was more prominent for 50 nm nanoAg coated with Tween 80 or CTAB rendering the least toxic nanoAg. Obtained results showed that the antimicrobial effects of nanoAg were driven by shed Ag-ions, depended on target bacteria, exposure time and were the interplay of NP size, solubility and surface coating.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Prata/química , Propriedades de Superfície
12.
Environ Sci Pollut Res Int ; 25(6): 5590-5602, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222658

RESUMO

The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic effects of NPs is particularly interesting. This study investigated the potential phytotoxicity of silver nanoparticles (AgNPs) on tobacco (Nicotiana tabacum) plants and compared it with the effects of the same AgNO3 concentrations. Accumulation of silver in roots and leaves was equally efficient after both AgNP and AgNO3 treatment, with predominant Ag levels found in the roots. Exposure to AgNPs did not result in elevated values of oxidative stress parameters either in roots or in leaves, while AgNO3 induced oxidative stress in both plant tissues. In the presence of both AgNPs and AgNO3, root meristem cells became highly vacuolated, which indicates that vacuoles might be the primary storage target for accumulated Ag. Direct AgNP uptake by root cells was confirmed. Leaf ultrastructural studies revealed changes mainly in the size of chloroplasts of AgNP-treated and AgNO3-treated plants. All of these findings indicate that nano form of silver is less toxic to tobacco plants than silver ions.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Íons , Meristema/efeitos dos fármacos , Meristema/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prata/química , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Propriedades de Superfície , /metabolismo
13.
Environ Res ; 156: 10-18, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314149

RESUMO

The increasing development of different nanomaterials, such as silver nanoparticles (AgNPs), and their practical use in agriculture and biotechnology has created a strong need for elucidations of biological effects and risk assessments of AgNPs in plants. This study was aimed to investigate AgNPs effects on metal uptake and their biodistribution in pepper plants as well as on morphological parameters and hormonal responses of the isoprenoid cytokinin (CK) family. In addition, the comparison of effects silver form, nanoparticles vs. ionic, has also been examined. To the best of our knowledge, this is the first study describing CK responses in plants exposed to metallic NPs. The obtained results indicate that both AgNPs and Ag+ ions significantly increased total content of Ag+ in pepper tissues in a dose-dependent manner and affected on plant development by decreasing both plant height and biomass in a similar way. This study evidenced for the first time the role of CKs in abiotic stress in plants caused by AgNPs. The hormonal analysis, conducted by an ultra-high performance liquid chromatography-electrospray tandem mass spectrometry, revealed a significant increase in total CKs in the leaves and also highlighted the importance of cis-zeatin type CKs in plants treated with AgNPs. Our observations suggest potential risks of AgNPs on plant ecosystems upon their release into the environment.


Assuntos
Capsicum/efeitos dos fármacos , Citocininas/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Capsicum/anatomia & histologia , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo
14.
Arh Hig Rada Toksikol ; 68(4): 245-253, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29337683

RESUMO

Nanomedicine is a booming medical field that utilises nanoparticles (NPs) for the development of medicines, medical devices, and diagnostic tools. The behaviour of NPs in vivo may be quite complex due to their interactions with biological molecules. These interactions in biological fluids result in NPs being enveloped by dynamic protein coronas, which serve as an interface between NPs and their environment (blood, cell, tissue). How will the corona interact with this environment will depend on the biological, chemical, and physical properties of NPs, the properties of the proteins that make the corona, as well as the biological environment. This review summarises the main characteristics of protein corona and describes its dynamic nature. It also presents the most common analytical methods to study the corona, including examples of protein corona composition for the most common NPs used in biomedicine. This knowledge is necessary to design NPs that will create a corona with a desired efficiency and safety in clinical use.


Assuntos
Nanomedicina/tendências , Nanopartículas/química , Plasma/química , Coroa de Proteína/química , Previsões , Humanos
16.
Environ Toxicol ; 31(6): 679-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25448069

RESUMO

Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate-coated AgNPs reduced cell viability in a dose-dependent manner. The IC50 values of silver ions and citrate-coated AgNPs were 0.5 and 50 mg L(-1) , respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679-692, 2016.


Assuntos
Albuminas/metabolismo , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Íons/toxicidade
17.
Food Chem ; 143: 522-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054276

RESUMO

Growing interest in organic agriculture has prompted this study aiming to evaluate nutritional content of wheat flours originating from organic and conventional production systems. Obtained results showed that organic samples had significantly lower protein content and lower levels of Ca, Mn and Fe compared to conventional samples. Protein digestibility and levels of K, Zn and Mo were significantly higher in organic than in conventional wheat flours. Regarding undesirable metals, significantly higher levels of As and Cd were found in conventional compared to organic wheat flours. Although the mean concentrations of zearalenone and ochratoxin A were higher in conventional than in organic flours, this difference was not significant. This study revealed that organic agriculture has the potential to yield products with some relevant improvements in terms of high quality proteins and microelements contents, while the reduction in contamination with toxic elements and mycotoxins may be accomplished.


Assuntos
Agricultura/métodos , Farinha/análise , Triticum/química , Inocuidade dos Alimentos , Valor Nutritivo , Agricultura Orgânica , Proteínas de Plantas/análise , Oligoelementos/análise
18.
Org Biomol Chem ; 10(6): 1196-206, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22179435

RESUMO

Structural and electronic properties and chemical fate of free radicals generated from hydroxyurea (HU) and its methylated analogues N-methylhydroxyurea (NMHU) and O-methylhydroxyurea (OMHU) are of utmost importance for their biological and pharmacological effects. In this work the cis/trans conformational processes, tautomerizations, and intramolecular hydrogen and methyl migrations in hydroxyurea-derived radicals have been considered. Potential energy profiles for these reactions have been calculated using two DFT functionals (BP86 and B3LYP) and two composite models (G3(MP2)RAD and G3B3). Solvation effects have been included both implicitly (CPCM) and explicitly. It has been shown that calculated energy barriers for free radical rearrangements are significantly reduced when a single water molecule is included in calculations. In the case of HU-derived open-shell species, a number of oxygen-, nitrogen-, and carbon-centered radicals have been located, but only the O-centered radicals (e1 and z1) fit to experimental isomeric hyperfine coupling constants (hfccs) from EPR spectra. The reduction of NMHU and OMHU produces O-centered and N-centered radicals, respectively, with the former being more stable by ca. 60 kJ mol(-1). The NMHU-derived radical e4 undergoes rearrangements, which can result in formation of several conceivable products. The calculated hfccs have been successfully used to interpret the experimental EPR spectra of the most probable rearranged product 10. Reduction potentials of hydroxyureas, radical stabilization energy (RSE) and bond disocciation energy (BDE) values have been calculated to compare stabilities and reactivities of different subclasses of free radicals. It has been concluded, in agreement with experiment, that reductions of biologically relevant tyrosyl radicals by HU and NMHU are thermochemically favorable processes, and that the order of reactivity of hydroxyureas follows the experimentally observed trend NMHU > HU > OMHU.


Assuntos
Hidroxiureia/química , Teoria Quântica , Radicais Livres/química , Hidroxiureia/análogos & derivados , Metilação , Termodinâmica
19.
J Phys Chem A ; 112(46): 11756-68, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18950143

RESUMO

The values of Ka, DeltaSa, and DeltaHa for deprotonation of hydroxyurea (HU) and N-methylhydroxyurea (NMHU), as targeted compounds, and for betainohydroxamic acid, were potentiometrically determined. Although NMHU has two and HU even three deprotonation sites, the measurements confirm that they behave as weak acids with a single pK a approximately 10. Comparison with analogous thermodynamic parameters previously determined for series of monohydroxamic acids reveals deviations from a DeltaSa, vs DeltaHa plot for HU and NMHU, raising the question of the dissociation site of hydroxureas in water. In addition to the deprotonation of the hydroxyl oxygen, ab initio calculations performed at the MP2/6-311++G(d,p) level of theory for these two compounds indicate a notable participation of the nitrogen deprotonation site in HU. The calculations for the isolated, monohydrate, trihydrate, and decahydrate molecular and anionic forms of hydroxyureas support the importance of hydrogen bonding in the gas and aqueous phases. The hydroxylamino nitrogen in HU is the most acidic site in water, contributing approximately 94% to the overall deprotonation process at 25 degrees C. On the contrary, the hydroxylamino oxygen is by far the most favored deprotonation site in NMHU, contributing almost 100% in aqueous medium. The predicted participations of two deprotonation sites in HU, calculated at the MP2/6-311++G(d,p) level of theory, combined with the calculated relative reaction enthalpy and entropy for the deprotonation, satisfactorily explain the observed deviation from linearity of DeltaHa vs DeltaSa, plot. There is no such a simple explanation for acid-base behavior of NMHU.


Assuntos
Ácidos Hidroxâmicos/química , Hidroxiureia/química , Modelos Lineares , Potenciometria , Prótons , Teoria Quântica , Software , Termodinâmica
20.
Inorg Chem ; 46(4): 1488-501, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17249657

RESUMO

Extensive geometry optimizations have been performed at the BP86 level of density functional theory, in order to identify the most stable isomer of pentacoordinated [VO(OH)UH2O]+ and [VOU(H2O)2]2+ as well as of hexacoordinated [VO(OH)U(H2O)2]+ and [VOU(H2O)3]2+ complexes (U = hydroxyurea anion). Most of these are conformationally very flexible, with up to 12 isomers within an energy range of 5 kcal/mol. The most stable hexacoordinate forms are characterized by the oxo ligand in trans position to the carbonyl O atom of U. Bulk solvent effects on the relative stabilities, estimated from a polarizable continuum model, are indicated to be small and do not affect the energetic sequence of the isomers significantly. Details of the coordination sphere of the most stable isomers in aqueous solution (coordination number, protonation state) have been studied with Car-Parrinello molecular dynamics simulations. The preferred mechanisms of interconversion between selected [VO(OH)U(H2O)2]+ isomers, according to the DFT computations, involve proton transfers between H2O and OH or between O and OH ligands in the coordination sphere of the metal, assisted by a water molecule from the second hydration sphere.


Assuntos
Hidroxiureia/química , Compostos Organometálicos/química , Vanádio/química , Água/química , Ligação de Hidrogênio , Isomerismo , Ligantes , Modelos Teóricos , Estrutura Molecular , Prótons , Soluções/química , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...